Search
View Program
Login
Current time at conference location:
11:06 pm CT
Advanced search
Return to Search Results
Print
Session ID
111
Session Title
The Impact of Artificial Intelligence on Astrophysics Research: Avenues and Potential Breakthroughs
Data-Driven Discovery: Machine Learning for the Detection and Characterization of X-ray Transients
Program Number:
111.09
Terminal Number:
128
Steven Dillmann
,
University of Cambridge
;
AstroAI
,
Center for Astrophysics | Harvard & Smithsonian
.
View Abstract
More in this Session
Pavo: Machine learning-aided discovery of a new low-mass, st...
Michael Jones, University of Arizona; David Sand, University of Arizona; Burcin Mutlu Pakdil, Dartmouth College; Richard...
Breakthrough Listen Search for Intelligent Life in the Galac...
Sid Solaiyappan, University of Michigan; Karen Perez, Columbia University; Vishal Gajjar, UC Berkeley.
Emulation by committee: faster AGN modelling
Benjamin Ricketts, SRON Netherlands Institute for Space Research; Daniela Huppenkothen, SRON Netherlands Institute for S...
DeepSZSim: Fast Simulations of the Thermal Sunyaev–Zel...
Eve Vavagiakis, Cornell University; Kush Banker, University of Chicago; Brian Zhang, University of Chicago; Elaine Ran, ...
Determining Physical Parameters of Serendipitous Sources usi...
Joshua Wing, Center for Astrophysics | Harvard & Smithsonian; Gerrit Schellenberger, Center for Astrophysics | Harvard &...
WITHDRAWN
Utilizing Artificial Intelligence Techniques for Information...
Kelly Lockhart, NASA Astrophysics Data System; Sergi Blanco-Cuaresma, NASA Astrophysics Data System; Alberto Accomazzi, ...
Data-Driven Discovery: Machine Learning for the Detection an...
Rafael Martinez Galarza, Smithsonian Astrophysical Observatory; Steven Dillmann, Imperial College London; Rosanne Di Ste...
Data-Driven Discovery: Machine Learning for the Detection an...
Steven Dillmann, University of Cambridge; AstroAI, Center for Astrophysics | Harvard & Smithsonian.